organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Hydroxy-10-phenacylpyrrolo[2,1-c]-[1.4]benzodiazepine-5.11-dione

S. Ourahou,^a M. Chammache,^a H. Zouihri,^b El Mokhtar Essassi^a and Seik Weng Ng^{c*}

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bCNRST, Division of UATRS Angle Allal Fassi/FAR, BP 8027 Hay Riad, 10000 Rabat, Morocco, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 21 February 2010; accepted 23 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.118; data-to-parameter ratio = 9.2.

The title compound, C₂₀H₁₈N₂O₄, consists of a benzodiazepinedione system fused to a pyrrole system. The sevenmembered ring adopts a boat-shaped conformation (with the methine C atom as the prow); the five-membered ring adopts an enveloped-shaped conformation (with the hydroxybearing C atom as the flap). In the crystal, the hydroxy group is hydrogen bonded to the carbonyl O atom of an adjacent molecule, generating a zigzag chain.

Related literature

Pyrrolo[2,1-c][1,4]benzodiazepines are potent antibiotics produced by Streptomyces species; see: Cargill et al. (1974). For the design of DNA inter-strand cross-linkingand conjugate agents to enhance the sequence selectivity and selectivity for tumor cells, see: Gregson et al. (2004).

Experimental

Crystal data

$C_{20}H_{18}N_2O_4$	V = 1663.41 (6) Å ³
$M_r = 350.36$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 8.8337 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 9.9476 (2) Å	T = 293 K
c = 18.9295 (4) Å	$0.3 \times 0.3 \times 0.3$ mm

1967 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.030$

Data collection

Bruker APEXII diffractometer 12798 measured reflections 2189 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.118$	independent and constrained
S = 1.15	refinement
2189 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
239 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···O1 ⁱ	0.84 (1)	2.02 (2)	2.810 (2)	157 (4)
Symmetry code: (i)	$-x, y + \frac{1}{2}, -z + \frac{1}{2}$			

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5200).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Cargill, C., Bachmann, E. & Zbinden, G. (1974). J. Natl. Cancer Inst. 53, 481-486
- Gregson, S. T., Howard, P. W., Gullick, D. R., Hamaguchi, A., Corcoran, K. E., Brooks, N. A., Hartley, J. A., Jenkins, T. C., Patel, S., Guille, M. J. & Thurston, D. E. (2004). J. Med. Chem. 47, 1161-1174.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

supplementary materials

Acta Cryst. (2010). E66, 0732 [doi:10.1107/S1600536810006902]

2-Hydroxy-10-phenacylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione

S. Ourahou, M. Chammache, H. Zouihri, E. M. Essassi and S. W. Ng

Experimental

2-Hydroxy-pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione (2 g, 8.62 mmol), phenacyl bromide (1.7 g, 8.62 mmol), potassium carbonate (2.4 g, 17.24 mmol) and a catalytic quantity of tetra-n-butylammonium bromide was stirred under mild reflux in N,N-dimethylformamide (60 ml) for 48 h. The insoluble salts were filtered off and the solvent was removed under vacuum. The residue was separated by chromatography on silica gel with an n-hexane:ethyl acetate (3:7) solvent system. The compound was obtained as colorless crystals in 70% yield upon evaporation of the solvent.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93-0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C). The oxygen-bound H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84±0.01 Å. Due to the absence of anomalous scatterers Friedel pairs were merged and the absolute configuration was arbitrarily set.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{20}H_{18}N_2O_4$ at the 50% probability level; hydrogen atoms are drawn as arbitrary radius.

2-Hydroxy-10-phenacylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione

F(000) = 736
$D_{\rm x} = 1.399 {\rm ~Mg~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 4805 reflections
$\theta = 3.0-29.4^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
<i>T</i> = 293 K
Block, colorless
$0.3\times0.3\times0.3~mm$

Data collection

Bruker APEXII diffractometer	1967 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.030$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
12798 measured reflections	$k = -12 \rightarrow 12$
2189 independent reflections	<i>l</i> = −24→24

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.118$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.15	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0831P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2189 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
239 parameters	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.0779 (2)	0.39357 (16)	0.24376 (9)	0.0502 (4)
O2	0.47486 (17)	0.28910 (19)	0.16152 (10)	0.0518 (4)
O3	0.1749 (3)	0.72478 (18)	0.14616 (10)	0.0573 (5)
Н3	0.126 (4)	0.779 (3)	0.1712 (18)	0.096 (14)*
O4	0.4142 (2)	0.07005 (18)	0.02926 (9)	0.0558 (5)
N1	0.2550 (2)	0.18311 (17)	0.13852 (9)	0.0343 (4)
N2	0.1470 (2)	0.44132 (16)	0.19462 (9)	0.0352 (4)
C1	0.1014 (2)	0.18283 (19)	0.11457 (11)	0.0329 (4)
C2	0.0577 (3)	0.0859 (3)	0.06534 (14)	0.0500 (6)
H2	0.1291	0.0261	0.0476	0.060*
C3	-0.0909 (3)	0.0780 (3)	0.04276 (15)	0.0566 (7)
H3A	-0.1185	0.0117	0.0106	0.068*

C4	-0.1975 (3)	0.1657 (3)	0.06668 (14)	0.0520 (6)
H4	-0.2963	0.1613	0.0498	0.062*
C5	-0.1575 (3)	0.2611 (2)	0.11618 (13)	0.0412 (5)
Н5	-0.2305	0.3202	0.1332	0.049*
C6	-0.0085 (2)	0.27020 (19)	0.14120 (10)	0.0325 (4)
C7	0.0178 (2)	0.37199 (19)	0.19761 (11)	0.0338 (4)
C8	0.1753 (3)	0.5578 (2)	0.23967 (11)	0.0407 (5)
H8A	0.2312	0.5325	0.2817	0.049*
H8B	0.0812	0.6006	0.2536	0.049*
C9	0.2686 (3)	0.6495 (2)	0.19265 (12)	0.0433 (5)
Н9	0.3342	0.7085	0.2206	0.052*
C10	0.3610 (3)	0.5518 (2)	0.14819 (13)	0.0450 (6)
H10A	0.4529	0.5260	0.1727	0.054*
H10B	0.3880	0.5920	0.1032	0.054*
C11	0.2580 (2)	0.42975 (19)	0.13715 (11)	0.0332 (4)
H11	0.2078	0.4344	0.0911	0.040*
C12	0.3410 (2)	0.2959 (2)	0.14577 (11)	0.0342 (4)
C13	0.3331 (3)	0.0550 (2)	0.14878 (11)	0.0372 (4)
H13A	0.2586	-0.0142	0.1585	0.045*
H13B	0.3987	0.0621	0.1897	0.045*
C14	0.4276 (2)	0.0125 (2)	0.08502 (11)	0.0350 (4)
C15	0.5352 (2)	-0.10218 (19)	0.09258 (10)	0.0328 (4)
C16	0.5804 (3)	-0.1537 (2)	0.15741 (12)	0.0389 (5)
H16	0.5395	-0.1194	0.1989	0.047*
C17	0.6868 (3)	-0.2567 (3)	0.16037 (15)	0.0503 (6)
H17	0.7175	-0.2902	0.2039	0.060*
C18	0.7472 (3)	-0.3094 (3)	0.09913 (16)	0.0546 (6)
H18	0.8188	-0.3778	0.1014	0.065*
C19	0.7009 (3)	-0.2605 (2)	0.03459 (15)	0.0500 (6)
H19	0.7405	-0.2967	-0.0068	0.060*
C20	0.5961 (2)	-0.1579 (2)	0.03106 (12)	0.0406 (5)
H20	0.5656	-0.1255	-0.0128	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0493 (9)	0.0446 (8)	0.0566 (9)	-0.0037 (8)	0.0283 (8)	-0.0046 (8)
O2	0.0303 (7)	0.0521 (10)	0.0730 (11)	0.0000 (8)	-0.0009 (8)	-0.0129 (9)
O3	0.0768 (13)	0.0405 (9)	0.0548 (11)	0.0056 (10)	0.0169 (10)	0.0012 (8)
O4	0.0678 (12)	0.0546 (10)	0.0450 (9)	0.0199 (10)	0.0092 (9)	0.0123 (8)
N1	0.0318 (8)	0.0296 (8)	0.0415 (9)	0.0026 (7)	0.0014 (7)	-0.0074 (7)
N2	0.0379 (9)	0.0292 (8)	0.0385 (8)	-0.0043 (7)	0.0131 (8)	-0.0076(7)
C1	0.0327 (9)	0.0300 (9)	0.0360 (9)	-0.0053 (8)	0.0024 (8)	-0.0021 (8)
C2	0.0461 (12)	0.0484 (13)	0.0555 (14)	-0.0071 (11)	0.0008 (11)	-0.0178 (11)
C3	0.0553 (14)	0.0611 (15)	0.0535 (14)	-0.0201 (14)	-0.0088 (12)	-0.0107 (12)
C4	0.0378 (11)	0.0618 (15)	0.0563 (14)	-0.0151 (12)	-0.0092 (11)	0.0121 (12)
C5	0.0318 (10)	0.0429 (11)	0.0490 (12)	-0.0046 (9)	0.0025 (10)	0.0128 (10)
C6	0.0321 (9)	0.0295 (8)	0.0360 (9)	-0.0046 (8)	0.0062 (8)	0.0051 (8)

supplementary materials

C7	0.0352 (9)	0.0281 (9)	0.0381 (9)	0.0006 (9)	0.0097 (9)	0.0017 (7)
C8	0.0507 (12)	0.0329 (9)	0.0386 (10)	-0.0039 (10)	0.0101 (10)	-0.0110 (8)
C9	0.0497 (12)	0.0326 (10)	0.0474 (11)	-0.0085 (10)	0.0093 (11)	-0.0134 (9)
C10	0.0436 (12)	0.0360 (10)	0.0553 (13)	-0.0132 (10)	0.0165 (11)	-0.0136 (9)
C11	0.0335 (9)	0.0300 (9)	0.0362 (9)	-0.0055 (8)	0.0091 (9)	-0.0063 (8)
C12	0.0301 (9)	0.0355 (10)	0.0369 (10)	-0.0017 (9)	0.0060 (8)	-0.0093 (8)
C13	0.0402 (10)	0.0307 (9)	0.0408 (10)	0.0028 (9)	0.0047 (10)	-0.0018 (8)
C14	0.0365 (10)	0.0295 (9)	0.0390 (10)	-0.0022 (9)	0.0040 (9)	-0.0017 (8)
C15	0.0315 (9)	0.0270 (8)	0.0398 (10)	-0.0044 (8)	0.0028 (8)	-0.0048 (7)
C16	0.0387 (10)	0.0365 (10)	0.0415 (10)	-0.0023 (9)	0.0015 (9)	-0.0023 (8)
C17	0.0469 (13)	0.0456 (12)	0.0586 (14)	0.0048 (12)	-0.0040 (12)	0.0076 (11)
C18	0.0435 (12)	0.0422 (12)	0.0781 (18)	0.0112 (11)	0.0071 (13)	-0.0013 (12)
C19	0.0460 (13)	0.0426 (12)	0.0615 (14)	0.0023 (11)	0.0118 (11)	-0.0147 (11)
C20	0.0419 (11)	0.0400 (11)	0.0401 (10)	-0.0025 (10)	0.0065 (9)	-0.0082 (9)

Geometric parameters (Å, °)

O1—C7	1.235 (2)	C8—H8B	0.9700
O2—C12	1.221 (3)	C9—C10	1.523 (3)
O3—C9	1.421 (3)	С9—Н9	0.9800
O3—H3	0.841 (10)	C10-C11	1.531 (3)
O4—C14	1.207 (3)	C10—H10A	0.9700
N1—C12	1.362 (3)	C10—H10B	0.9700
N1—C1	1.430 (3)	C11—C12	1.529 (3)
N1—C13	1.462 (3)	C11—H11	0.9800
N2—C7	1.334 (3)	C13—C14	1.528 (3)
N2—C8	1.460 (2)	С13—Н13А	0.9700
N2—C11	1.469 (2)	C13—H13B	0.9700
C1—C2	1.396 (3)	C14—C15	1.492 (3)
C1—C6	1.397 (3)	C15—C16	1.389 (3)
C2—C3	1.383 (4)	C15—C20	1.397 (3)
С2—Н2	0.9300	C16—C17	1.391 (3)
C3—C4	1.361 (4)	С16—Н16	0.9300
С3—НЗА	0.9300	C17—C18	1.379 (4)
C4—C5	1.380 (4)	С17—Н17	0.9300
C4—H4	0.9300	C18—C19	1.377 (4)
C5—C6	1.402 (3)	C18—H18	0.9300
С5—Н5	0.9300	C19—C20	1.379 (3)
C6—C7	1.490 (3)	С19—Н19	0.9300
C8—C9	1.518 (3)	С20—Н20	0.9300
C8—H8A	0.9700		
С9—О3—Н3	107 (3)	C9—C10—H10A	110.7
C12—N1—C1	124.24 (17)	C11—C10—H10A	110.7
C12—N1—C13	116.19 (16)	С9—С10—Н10В	110.7
C1—N1—C13	119.21 (17)	C11—C10—H10B	110.7
C7—N2—C8	122.12 (17)	H10A—C10—H10B	108.8
C7—N2—C11	124.18 (16)	N2-C11-C12	108.02 (17)
C8—N2—C11	112.35 (16)	N2-C11-C10	103.50 (16)
C2—C1—C6	118.6 (2)	C12-C11-C10	113.01 (18)

C2C1N1	118.36 (19)	N2—C11—H11	110.7
C6—C1—N1	122.92 (17)	C12—C11—H11	110.7
C3—C2—C1	120.5 (2)	C10-C11-H11	110.7
С3—С2—Н2	119.7	O2-C12-N1	121.3 (2)
C1—C2—H2	119.7	O2-C12-C11	122.6 (2)
C4—C3—C2	121.2 (2)	N1—C12—C11	116.05 (16)
С4—С3—НЗА	119.4	N1-C13-C14	113.23 (17)
С2—С3—НЗА	119.4	N1—C13—H13A	108.9
C3—C4—C5	119.3 (2)	C14—C13—H13A	108.9
C3—C4—H4	120.4	N1—C13—H13B	108.9
C5—C4—H4	120.4	C14—C13—H13B	108.9
C4—C5—C6	121.0 (2)	H13A—C13—H13B	107.7
С4—С5—Н5	119.5	O4—C14—C15	120.62 (19)
С6—С5—Н5	119.5	O4—C14—C13	120.4 (2)
C1—C6—C5	119.35 (19)	C15—C14—C13	118.97 (17)
C1—C6—C7	124.96 (18)	C16—C15—C20	118.63 (19)
C5—C6—C7	115.64 (19)	C16-C15-C14	123.39 (18)
O1—C7—N2	121.73 (19)	C20—C15—C14	117.96 (18)
O1—C7—C6	121.22 (19)	C15—C16—C17	120.1 (2)
N2—C7—C6	117.01 (17)	C15—C16—H16	119.9
N2—C8—C9	103.16 (16)	C17—C16—H16	119.9
N2—C8—H8A	111.1	C18—C17—C16	120.5 (2)
С9—С8—Н8А	111.1	С18—С17—Н17	119.8
N2—C8—H8B	111.1	С16—С17—Н17	119.8
С9—С8—Н8В	111.1	C19—C18—C17	119.8 (2)
H8A—C8—H8B	109.1	C19—C18—H18	120.1
O3—C9—C8	111.3 (2)	C17—C18—H18	120.1
O3—C9—C10	107.82 (19)	C18—C19—C20	120.2 (2)
C8—C9—C10	103.35 (17)	С18—С19—Н19	119.9
О3—С9—Н9	111.3	С20—С19—Н19	119.9
С8—С9—Н9	111.3	C19—C20—C15	120.8 (2)
С10—С9—Н9	111.3	С19—С20—Н20	119.6
C9—C10—C11	105.27 (17)	С15—С20—Н20	119.6
C12—N1—C1—C2	136.0 (2)	C8—N2—C11—C12	119.19 (19)
C13—N1—C1—C2	-36.8 (3)	C7—N2—C11—C10	166.1 (2)
C12—N1—C1—C6	-47.7 (3)	C8—N2—C11—C10	-0.9 (2)
C13—N1—C1—C6	139.5 (2)	C9—C10—C11—N2	-20.6 (2)
C6—C1—C2—C3	0.9 (4)	C9—C10—C11—C12	-137.16 (19)
N1—C1—C2—C3	177.4 (3)	C1—N1—C12—O2	-174.6 (2)
C1—C2—C3—C4	1.3 (5)	C13—N1—C12—O2	-1.6 (3)
C2—C3—C4—C5	-2.2 (4)	C1—N1—C12—C11	8.7 (3)
C3—C4—C5—C6	1.0 (4)	C13—N1—C12—C11	-178.27 (17)
C2—C1—C6—C5	-2.1 (3)	N2-C11-C12-O2	-112.3 (2)
N1—C1—C6—C5	-178.35 (18)	C10-C11-C12-O2	1.6 (3)
C2—C1—C6—C7	175.3 (2)	N2-C11-C12-N1	64.4 (2)
N1—C1—C6—C7	-0.9 (3)	C10-C11-C12-N1	178.29 (18)
C4—C5—C6—C1	1.1 (3)	C12—N1—C13—C14	-78.0 (2)
C4—C5—C6—C7	-176.5 (2)	C1—N1—C13—C14	95.4 (2)
C8—N2—C7—O1	-7.9 (3)	N1-C13-C14-O4	-11.8 (3)

supplementary materials

C11—N2—C7—O1	-173.6 (2)	N1-C13-C14-C15	168.91 (16)
C8—N2—C7—C6	170.02 (18)	O4—C14—C15—C16	165.7 (2)
C11—N2—C7—C6	4.3 (3)	C13-C14-C15-C16	-15.1 (3)
C1—C6—C7—O1	-140.7 (2)	O4—C14—C15—C20	-12.7 (3)
C5—C6—C7—O1	36.8 (3)	C13-C14-C15-C20	166.57 (19)
C1—C6—C7—N2	41.3 (3)	C20-C15-C16-C17	1.4 (3)
C5—C6—C7—N2	-141.1 (2)	C14-C15-C16-C17	-176.9 (2)
C7—N2—C8—C9	-145.4 (2)	C15—C16—C17—C18	-0.7 (4)
C11—N2—C8—C9	21.8 (2)	C16-C17-C18-C19	-0.5 (4)
N2—C8—C9—O3	82.0 (2)	C17-C18-C19-C20	0.8 (4)
N2-C8-C9-C10	-33.5 (2)	C18-C19-C20-C15	0.0 (4)
O3—C9—C10—C11	-84.2 (2)	C16-C15-C20-C19	-1.1 (3)
C8—C9—C10—C11	33.8 (2)	C14—C15—C20—C19	177.3 (2)
C7—N2—C11—C12	-73.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O3—H3···O1 ⁱ	0.84 (1)	2.02 (2)	2.810 (2)	157 (4)
Symmetry codes: (i) $-x$, $y+1/2$, $-z+1/2$.				

Fig. 1